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PREFACE

Inverse protlems are basic problems in science. in
which physical systems are to be identified on the basis
of experimental observations. It is shown in this Memorandum

that a wide class of inverse problems may be readily solved

with high speed computers and mocdern ccmputational techniques.

This is demonstrated by formulating and solving some inverse
problems which arise in celestial mechanics, transport theory
and wave propagation. FORTRAN programs are listed in the
Appendix. Computational aspects of inverse problems are of
interest to physicists, engireers and biologists who are
engaged in system identification, in the planning of experi-

ments and the analysis of data, and in the construction of

mathematical models. This study was supported by the Advanced

Research Projects Agency.

The author wishes to express her gratitude for the
inspiration and guidance of Professor Suzo Ueno of the
University of Kyoto, arnd of Dr. Richard Bellman and Dr.
Robert Kalaba of the RAND Corporation.




SUMMARY

Inverse problems are tasic problems in science, in which
physical systems are to be identified on the basis of experi-
mental observations. Inverse problems are especially impor—
tant in the fields of astrophysics and astronomy, for their
objects of investigation are frequently not observable in a
direct fushion. Solar and stellar structure, for example, is
estimated from the study of spectra, while the structure of
a planetar; atmosphere may be deduced from measurements of
reflected sunlight.

we show that a wide class of inverse problems may now
be solved with high speed computers and modern computational
techniques. Many problems may be formulated in terms of sys—

tems of ordinary differential equations of the form
(1) x = f(x, a) .

Here, t 1is the independent variable, x 1s an n-dimensional
vector whose components are the dependent variables, and a

is an m-dimensional vector whcse components represent the
structure cf the system. For instance, in an orbit determin-
ation problem, Egs. {1) are the dynamical equations of motion,
and the masses of the bodies involved may be given by the

vector «a., When the system parametzsrs and a complete set of

initial conditicns,

(2) x(0) =c ,
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are known, an integration of (1) produces the solution x(t)
on the interval 0 < t < T . This is done speedily and
accurately with a digital computer.

On the other hand, in an inverse problem, the solution
¥»(t) or some function of x(t) is known at various times,
while the parameters are not directly observab':., We wish
to determine the structure of the system as given by the
parameter vector, a, and a complete set of initial conditions,
c . We regard this as being a nonlinear boundary value prob-

t

lem in which the unknowns are some of the c¢'s and a's

We require that the solution agree with the observations,
(3) x(t;) = by .

in some sense, e.g., in a least squares sense.

Frequently, problems which do not naturally occur 1in
the form of systems of ordinary differential equations may
be expressed in that form in an approximate ropresentation.
In this thesis, we show how we may reduce a partial
differential-integral equation to a system cof ordinary dif-
ferential equations with the use of a quadrature formula.
Also, we may express a partial differential equation, like

the wave equation,

(4) oy oL 2
w2 2 el

in the desired form by applying Laplace transform methods
which remove th2 time derivative. Other possibilities are

clearly available.
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Nonlinear boundary value problems can be solved by a
variety of methods, which include quasilinearization, dynamic
programming, and invariant imbedcding. These techniques are
especially suited to modern computers, for they reduce non-
linear boundary value problems to nonlinear initial value
problems, which are more easily treated on digital computers.

These computational ideas are illustrated in this thesis
by actually fomulating and solving some inverse problems
which arise in celestial mechanics, radiative transfer, neu—
tron transport and wave propagation. In one of the problems,
we estimate the stratification of a layered medium from re—
flection data. In another, we determine a variable wave
velocity by observing a portion of the transients produced
by a known stimulus. Numerical experiments are counducted
to estimate the stability of the methods and the effect of
the number and quality of observational measurements. Com—
plete FORTRAN programs are given in the Appendices.

These computational aspects of inverse problems nay
prove to be of value to the physicist, engineer, or mathe-
matical biologist who wishes to determine the structure of
a system on the basis of observations. These ideas may be
helpful in the planning of experiments and in the choice of
apparatus. They may be used to desigr systems whizh have
certain desired properties. In particular, these methods
may be useful in the construction of stellar and planctary

models.
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CHAPTER ONFE
INTROVUUT1ON

1. INTRODUCTION

Inverse problems are fundanental problems of science
[1-12j. Man has always sought knowledge of a physical sys-—
tem beyond that which is directly observable. Even today,
we try to understand the dynamical processes of the deep
interior of the sun by observing the radiation emerging from
the sun's surface. We deduce the potential field of an
atom from nuclear scattering expecriments. The underlying
theme is the relationship between the internal structure of
a system and the observed output. The hidden features of
the system are tc be extracted from the experimental data.

Mathematical treatment of physical problems has been
devoted almost exclusively to the '"direct problem." A
ceinplete picture of the system is assumed tc be given, and
equations are derived which descuribe che output as a func—
tion of the system parameters. The inverse problem is to
determine the paramectzrs and structure of a system as a

function of the observed output.
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One can solve a given inverse problem by solving a
series of direct problems: by assuming different sets of
parameters, determining the corresponding outputs from the
theoretical equations, and comparing theorestical versus
experimental results. By trial and error. one may fivrd a
sclution which approximately agrees with the experimental
data. This is not a very efficient procedure. Another
way to solve an inverse problem is to solve analytically
for the unknown parameters as functions of the measurements.
This method generally requires much abstract mathematics
and simple approximaticns of complex functions. The result—
ant inverse solution may be valid only in very special cir-
cumstances.

what we seek are efficient, systematic procedures
for solving a wide class of inverse problems - procedures
which are suitable for execution on high speed digital com-
puters. Computers are currently capable of Integrating
large systems of ordinary differential equations, given a
complete set of initial conditions, with high accuracy.

We would like to formulate our problems in terms of systems
of ordinary differential equations. Partial differential

equations, such as the wave equation,

.2 2
Afulx,t) 1 3%u(x,t)
____L7 = 7 = L ,

AX c 3¢




may be reduced to systems of ordinary differential equations
in several wavs which include the use of Laplace transform
methods, Fourier decomposition, and finite difference schemes.
Integro—-differential equations, which frequently occur in
transport theory, may be reduced to systems of ordinary dif-
ferential equations by approximatirg the definite integrals
by finite sums using Gaussian and other quadrature formulas.
Other means of formulating p:oblems in terms of ordinary dif-
ferential equations are porcsible.

We desir= to formulate our inverse prcoblem in such a
way that we deal with ordinary differential equations. First,
as we shall show, we may express fthe problem as a nonlinear
boundary value problem, in which we seek a complete set of
initial conditions. The unknown system parameters will be
calculated directly from the initial conditiois. Next, we
resolve the nonlinear boundary value problem, ordinarily a
difficult task, by the use of some scphisticated techniques
[13-24]. We may replace the nonlinear boundary value prob—
lem by a rapidly converging sequence of linear boundary
value problems via the technique of quasilinearization
[1-3,16,17}. We may, alternatively, treat the problem as
a2 multi-stage decision process with the use of dynamic pro-
gramming [18]. Or, we may solve directly for the missing

initial conditicns by applying the coancept of invariant
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imbedding 713,24). From the solution of the nonlinear
boundary value problem, we immediately obtain knowledge of
the internal structure of the system.

In this thesis. we discuss some of these relatively
new concepts, computational techniques, and applications.
Our examples from celestial mechanics, transport theory
and wave propagation are physically motivated. No special-
ized background is required on the part of the reader beyond
a knowledge of elementary physics. We intend to be self-
contained in the mathematical derivations, except for those
matters which are well-treated elsewhere. such as dynamic
programming, linear programming, and the numerical inver-
sion of Laplace transforms. Again, nc special mathematical
knowledge is needed beyond the level of ordinary differential
equations and linear algebraic equations. We will, however,
assume that we have at our disposal a high-speed digital
computer with a memory of about 32,000 words, plus a liibrary
of computer routines for numerical integration, matrix inver—
sion, and linear prcgramming. Our basic acsumption i¢ that
our computer can integrate large systems of ordinary dif-
ferential equations rapidly and accurately [25,26].

In the first chapter, we wish to emphasize some impor—
tant ideas. We are given geocentric obserwvations of a heav-
enly body, taken at various times [27-29]. The orbit of
this brdy iies in the potential field created by the sun
and an unxknown perturbing mass. wWe show how the mass may

be identified and *he orbital elements found. For simplicity,




we assume that the position of the perturbing mass is given;
if desired. the position as a function of time could also
be estimated. Since we are virtually ferced by our mcdern
computers to take a fresh look at old problems, we are not
concerned with conic sections. A new methodology, based on
high speed digital computers, is developed. The technique
of quasilinearization, Jescribed in this chapter, enables
ue to solve this inverse problem with a minimum of effort.
In spite of the newness of this solution of a long-standing
problem in celestial mecnanics, we employ this example for
purely illustrative purposes.

Transport theory is intimately concerned with the
determination of radiation fields within scattering and
absorbing media [30-38]. Our first problem in radiative
transfer (Chapter Two) serves to exemplify the philoscphy
and application of invariant imbedding. We derive the basic
integro—differential equation for the diffuse reflection
function, and we reduce it to a system of ordinary differen-
tial equations by the method of Gaussian quadrature. Then
we formulate an inverse problem for the determination of
layers in a medium from knowledge of the diffusely reflected
light. We outline the computational procedure, and we present
our results. In Chapter Three, our setting is again an inhomo—
geneous scattering medium. We investigate the effects of
errors in our measurements, the nunber and quality of the
observations, and the criterion function, on the estimates
of the medium. Our criteria are either of least squares

type, which leads tc linear algebraic equations, or of




minimax form, which is suitable for linear programming. We
also consider a variatioa of the inverse problem, the contruc
tion of a model atmosphere according to certain specifications.
In Chapter Four, we consider an atisotropically scattering
medium. The phase function is to be determined on the basis
of measurements of diffusely refiected radiation in various
directions.

An inverse problem in neutron transport (Chapter Five)
is solved in a novel way. The dynamic programming approach
leads to a determination of absorption coefficients in a
rod, from measurements of internal fields. The calculation
is done by an exact method, and is compared with a calcula—
tion based on an approximate theory. The anproximate theory
is accurate and less costly in computing time.

As we have already mentioned, the partial differen—
tial wave equation may be re uced to a system of ordinary
differential equations by Laplace transform methods or by
Fourier decompositions. 1In Chapter Six, we deal with ordin-
ary differential equations for the Laplace transforms of
the disturbances. In these equations. time appears only
d4s a parameter. Our measurements of the disturbances at
various times are converted to the corresponding transforms
oy means of Gaussian quadrature. We solve a nonlinear
boundary value problem in order to determine the system
parameters. The inverse Laplace transforms may be obtained

by a numerical inversion techniqw. {22].




In Chapter Seven, we use a decomposition of the form
u(x,t) = u(x)emilt, corresponding to a steady-state situa-
tion of wave propagation. We probe an irhomogeneous slab

with waves of different frequencies and we '"measure" the

reflection coefficients. We wish to determine the index of
refraction as a function of distance in the medium. Invar—
iant imbedding leads to ordinary differei .ial equations for
the refiection coefficients, with known initial conditions.

The urknown index of refraction in the equations and the

observations of terminal values of the reflection coeffie—

cients make this a nonlincar boundary value problem. Quasi-

linearization is used to solve the problem, and computational

results are presented.

The final chapter is a general disc ssion of inverse
problems. Arpendices of all the FORTRAN programs written

for the computational experiments are included.

2. DLTERMINATION OF POTENTIAL

Consider the motion of a particle (or a wave) in a
potential field V = V(x, y, z; kl, k2’ e, kn) where
we recognize the dependence on physical parameters kl,

kz, ..., ky. Suppose that these parameters are unknown,




and that we have observations of the motion of the particle
at various times. We wish to determine the potential func—
tion on the basis of th2se measurements.

Consider the following situation. A heavenly body
H of mass m moves in the potential fizld created by the
sun and a perturbing body P, whose masses are M and mp,
respectively. and m -~ mp < M. All of the bodies con-
cerned lie in the ecliptic plane. The potential energy
varies inversely as the distance from the sun, r_, and

from the perturbing body. rp
s %
(1) ve=- S P
S |
Here, kS and kp are the parameters

s

(2) k. =vmM, kp =vmm, ,

where vy 1is the constant of gravitation. The quantity
ks may be assumed to be known. We choose our units so
that kS = m, or y M= 1. The parameter kp is unknown
and kp < kS. We wish to determine kp and thus V by
observing the mction of H.

Let us take the plane of the ecliptic to be the
(x, y) plane. The sun is situated at the origin, the
earth at the point (1, 0), and the perturbing body at
the locatior (7. n) = (4, 1). The earth only enters into

the discussion as the point from which measurements are

taken. Its mass is neglected. The potential function is




k k
(3) V(x.y; kp) = b”"‘1’/? T £ 177

(x%4y?) [(=x) (7 y) 2]

Angular observations of H are made at various times

L, - i=1, 2, ..., 5. Fig. 1 illustrates the physical situ-
ation. Each solid errow points to H at a given time t;-
The angle between the line of sight and the x axis is the
observation. For comparison, see the dashed arrows which
point to H when the mass of P is exactly zero, i.e.,

when kp = 0. It is obvious that kp is small.

The equations of motion are

.)E - -X + a(&-x) ,
(x2+y) 372 [(g-x)2+(n-y)2]3/2
(4)
00 ol A a(n-y)
(2ry2) 372 (eon) 24 (n-gy 21372

where the parameter «,

(5) az.EE:.ME,

is the mass of P relative to the mass of the sun. At
times t;. we obtain the angular data Q(ti) which are,

in radians,

5(0.0) = 0.0 .
5(0.5) = 0.252188 ,

(6) 5(1.0) = 0.507584 ,
A(1.5) = 0.763641 ,
£(2.0) = 1.01929 .

We wish to determine «a, x(0), x(0), y(0), y(0) so that the

conditions

B repRp o ——y—— e r—— e D e AT s o e T=%r = i 4y
g2 . . :
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yit,)

(7 tan 8(t;) = 1 Ti(“t_‘:T
are fulfilled. This is a nonlinear multipoint boundary
value problem. The solution of this problem gives tae rela—
tive mass of the perturbing body and the crbit of H as a
function of time. The potential (3) is determined when «a
is known. We may consider the problem then to be the deter—
mination of the orbit [19,23,27-29].

For an arbitrary potential field, we are unable tc
express the solution analytically. We solve the problem

computationally using the technique of quasilinearization [16,17].

3. QUASILINEARIZATION, SYSTEM IDENTIFICATION AND NONLINEAR

BOUNDARY VALUE PROBLEMS

Consider a physical system or process which is dascribed

by the system of N equations

(1) x = £(x, a),

where x 1s a vector of dimension N, a function of inde-

pendent variable t, with the N initial conditions
(2) x(Q) = c.

The vector x describes the state of the system at 'time"

t, and o 1is a parameter vector cf the system. With 4
given, Ens. (1) and (2) completely describe the system, for
the state at any time ¢t, x(t), may be calculated by a
numerical integration of (1) with initial conditions {2).
Now let us suppose that we have a system described
by Eqs. (1), but o 1is unknown to us, and the initial con-

ditions (2) are also unknown. However, we are able to make
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measurements of certain components of tre state of the sys-
tem at various times £y - We wish to identify the system by
determining «, and we wish to find a complete set of initial
conditions x(0) =c so that the system is fully described.
Ne think of the system parameter vector as if it were a

dependent variable which satisfies the vector equation
(3) a =0
with the unknown initial conditions

() «(0) = ag.

The multipoint boundary value problem which we have before

us is to find che complete set of initial conditions

x(0)
a(0) =

C,

(5)
Ay -

such that the solution of the nonlinear system

X = f(x,a)
(6)

o =0
agrees with the boundary conditions

(7) x(tg) = by,

where b, is the observed state of the system at time £
Let us suppose that we have exactly R = N + M measurements

of the first component of x, where N 1is the dimension of

x and M 1is the dimension of «.
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The boindary conditions are readily modified for a
two point boundarv value problem, or for more than R obser
vaticns. or for other types of measurements, for example
linear combinations of the components of x.

Our approach to the problem is one of successive ap—
proximations. We solve a sequence of linear problems. We
assume only t*at large svstems of ordinary differential
equations, whether linear or nonlinear, may be accurately
integrated numerically if initial conditions ar< prescribed,
and that linear algebraic systems may be accurately resolved.

Let us define a new column vector x of dircnsion R,
having as its elements *the components of the original vector

x and the components of «q,

(8) . N

X
L8 | M|

This vector of depeadent variables x(t) satisfies the sys—

tem of nonlinear equations

(9) X = £(x)
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according to (6). and it has the unkrown initial conditions

(10) x(0) = c.
according to (5). The boundary conditions are
(11) xl(ti) = bi' i=1.2. .... R.

Mathematically. we need not distinguish between the components
of this new vector x as state variables c¢r system parameters.
An initial approximation starts the calculations. We
form an estimate of the initial vector c, and we integrate sys-
tem (9) to produce the solution x{t) over the time interval
of interest, 0 2¢ s T. wvia numerical integraticn. The
quasilinearization procedure is applied itcratively until a
convergence to a solution cccurs, or the solution diverges.
Let us suppose that w' have completed stage k of our calcula-

. . . k
tions and we have tne current approximation x (t). In stage

k + 1. we wish to calculate a new approximation xK+1(t).
The vector function xk+l(t) is the solution of the

linear system

k1
X

(12) = £(x5) + 3 (ML,

where J(x) 1is the JacobLian matrix with elements

of;
o) Tij = o,
J
. k+1l . . . . .
Since x is a solution of a system of linear differential

equations, we know from general theory that it may be repre-

ei.ted as the sum of a particular solution, p(t), and a

= gy p s e
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linear combination of R independent solutions of the homo-

geneous equations, hl(t). i=1, 2, ..., R,

(14) <Fe) = p(e) +7 < nl(o).

1

n oA
H

The function p satisfies the equation

(15) o= £ + 3G (0 - K5,

and for convenience we choose the initial conditions

{16) p(0) = 0.

The functions hi are solutions of the homogeneous systems
(17) Bl - 36wt

and we choose the initial conditions

(18) hi(O) = the unit vector with all of its components

zero, except for the ith which is one.

The hi(O) form a linearly independrnt set. If the interval
(0,T) is sufficiently small, the functions hi(t) are also
indcpendent. The solutions p(t), hi(t) are produced by
numerical integration with the given initial conditions.
There are R+1 systems of differential equations, each with
R equations, making a total of R(R+1) equations which are
Integrated at each stage of our calculations.

After the functions p and hi have been found over
the interval, we must combine them so as to satisfy the

boundary conditions (11),

ﬁﬁ
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=

(19) b, =p,(t) + 2 oI nd(e). 1 =12, ... R

e
~

1

L

This results in a system of R lin-car algebraic equations
for the determiration of the R unknown multipliers cJ

of the standard form
(20) Ac =B,

where the elements of the RxR matrix of coefficients A

are

= 1
(21) Aij = hl(ti)’

and the components of the R-dimensional column vector B

are
(22; B. = b, — pl(t.).
Having determined the multipliers, we now know a com-

plete set of initial coaditions for the (k+1)St stage.

R ..
o) = p(0) + = oI Ri(o).

i=1

(23) c =

Because of our choice of initial conditions for p and hJ,
the initial values for each ccmponent of the vector x are

identical with thz multipliers cd,

c, = xb+1(0) = ci , i =1,2, ..., R.
1 i

(24)

Furthermore, we have a new approximation to the system para—

meter vector .
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(25) 1, '——~cN-rl .oo1=1.2, ..., M

The ~ew approximation xk+1(

t> Ffor the interval (0.T) may

be produced either by the integration of the linear equations

with the initial conditions just fcund., or by the linear com-—

bination of p(t) and h(t). The (k+l)St cycle is com-

plete and we are ready for the (k+2)nd. The process may be

repeated until no further change is noted in the vector c.
The quasilinearization procedure is analogous to

Newton's method for finding roots of an equation, €(x) = 0.

If XO is an approximate value of one of the roots cof

f(x), then an improved value xl is obtaired by applying

the Taylor expansion formula to £(x), and neglecting higher

derivatives,

(26) £(x") = f(xo) + (1 - % 3f(x

Thus. the next approximation of the root is

oy e ED
f'(xO)

.y . . . . 0 .
In quasilinearization, if the function x'(t) 1is an

approximate solution of the nonlinear differential equation,
(28) x = f(x)

then an improved solution xl(t) may be obtained in the
following manner. The function £(x) 1is expanded arcund

the current estimat~ xO(t), neglecting higher derivatives,

v
& B
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(29) f(Xl) = L(XO) + {x X ) hﬁ&%

The improved approximation xl(t) is the solution of the

linear equation,

1

0
(30) e e+ b XD G

AX
The method is easily eztended to vector functions. as we have
seen. The sequence cf functicns xl(t). xz(t). x3(t),
may be shown to converge quadratically in the limit[17]. Prac—
tically speaking. a gonod initial approximation leads to rapid
convergence. with the number of correct digits approximately
doubling with each additional iteration. ©n the other hand.
a poor initial approximation may lead to divergence.

The quasilinearization technique provides a systematic
way of treating nonlinear boundary value problemc. The com
putational solution of such a problem is broken up into stages.
in which a large system of ordinary differential eguations
is integrated with known initial conditions, and a linear
algebraic system is resolved. The initial value integration
problem is well-suited to the digital computer. With the aid

of a formula such as the trapezoidal rule,

t g ? A
(31) ftg £(e)dt Z 5 (fg + F1) + 5 (£) + £,)) + ... + 5 (f

n-1 i fn)'

the integral of a function over an interval is rapidly com-
puted. Moreover, higher order methods such as the Runge

Kutta and the Adams-Moulton. usually of fourth order, make it




19

possible to solve the iategration prebiem accurately and
rapidly. The accuracy may be as high as one part in 10°.

The solution is available at each grid point ty: ty P Sy

tg + 2°. .... t_. and may be stored in the computer 's memory
for use at some future time. The rapid access storage cap-
ability of a computer such as the IBM 7090 or 7044 is 32.007
words. The integration of several hundred first order equa-
tions is a routine affair.

On the other hand, the solution of a linear algebraic
system is not a routine matter. computationally speaking.
While formulas exist for the numerical inversion of a matrix,
the solution may be inaccurate. The matrix may be ill-
conditioned, and other techniques may have to be brought into
play to remedy the situation [20]. The storage of the nth

approximation for the calculation of the (n + l)st approxi—

mation may become a p wblem; a suggestion for overcoming

this difficulty is given in [21].

4. SOLUTION OF THE POTENTIAL PROBLEM

We follow the method of quasilinearization to identify
the unknown mass and to solve the problem of potential determina-

tion of Section 2. The nonlinear system of equations is

. ¥ X7
X = - -= o =y
r’ s”
R S
(1) : r 52
= 0
o i - a5y IR -3 - T 2y S
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with

(2) v’ = x4 y2 o §2 o (xoe)

System (1) is equivalent to a svstem of five first order
equations for x. X. y. y. and o. The system of linear

equations for the (k_+1)St stage is

k1 _ { X< Jox® e
rj S3
NS SR SN S T 352k 3k 2y
3 5 3
r r S S
K
+ (yk+ll yk) [_35‘ g g,_zk(_xk -)\yk—n) |

_‘..l ’
STJ
k k
« k+ { .
D gy Qe
r S
_k k ko k Ly, k
PR S {3_,-_5y ¢ 3G )
r S
4 k2  k k, k .2,
F (gL k){_%+3y_5___13$3,(y-_L3
r r g S

where

I € RN ¢ oy LI LIS RS S
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We express the solution of £3) as the sum of a particular
solution of (3) plus a linear combination of five independent

solutions c¢f the homogeneous form of (3).

5 . .
xTH(e) = p(e) +,Z; oI Bl
_ 5 .
k1, \ _ 2§ ]
(5) y (t) = Py(t) +j¥1 c hy(t) 5
5 ..
) = (0 + ol B

Here. the symbol px(t) is meant to represent the x com-
ponent of the particular solution, which is a vector of dimen-
sion five, and similarl' for the symbols py(t), pa(t). The

symbols hi(t), hi(t), hg(t) respectively correspond to tne

X, y. and @ components of the jth homogeneous solution
vector, for j =1, 2, ..., 5. The system which the par-
ticular soluticon satisfies is
- { B xk B ak xk_z }
Py 3 3 .
Y S
1 k2 k k, k 12
N
by Y S S
k k k., k k
oJky [3xy 3a (x"==)(y =n)
+(py y){ gl £ ‘}
r S
(6)... k
k ( - F
* (g - o {257
S
k k
k y-nl
P, = |- @
e R
k k, k .y, k
+(px_xk Ix y +_3_(1§x—~;%(y—n)}
S

w M e N P TSRy Sl e e R e T
.




k2 k k, k 2
ky /1 3 Y 30 (y m) "
= § 4+ 2"\
+ (py y ) L ]_'3 + - 53 )S_K j
(6) ky [ y<
+ (p1 @) L Y ~3'T‘ } '
s
p, =0
with the initial condition
(7) p(0) =0 .
The jth homogeneous solutio. satisfies the system
. . . k2 ko, kpox (2
hd =pd 11 $ 33X 7 a + 3a~(x” =)°
X X r_j rS s3 SS }
: k k k. k L _m-
+ ho { 37{5.‘1’, 4 30X 3%()1‘? ﬂ)}
y r s
j{oxs
iy { .3 }
k k k, k k
] j [ 3x7y" 3o (x 7)) (y )
(8) by =hl ! rg + S }
k2 k 5 k, k 2
+ hd | 1—3 + -3l~5_ T+ 30 _Q’_;' =Y
y U » - s s J

Its five initial conditions are presented in the appropriate

column of Table 1.
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TABLE T.

THE INITIAL CONDITIONS FOR THE
HOMOGENEOUS SOLUTIONS

j=1 2 3 4 5

hi(@) 1 0 0 0 0

kd (0) 0 1 0 0 0
x

hg(O) 0 0 1 0 0

h? (0) 0 0 0 1 0
y

hg(O) 9 0 0 0 1

The particular and homogeneous solutions are produced by
numerical integration and are known at the discrete times
c =0, 4, 27, 30, ..., T.

Let us find the system of linear algebraic equations
which is to be sonlved in the (k+1)st stage. The boundary

condi<ions may be expressed es

k+1 k+1
(9) ¥ (t1> + [1-x (ti)] tan e(ti) = 0 ,

where a(ti) is the observed angular position of the heavenly

body H at time t;,. Using relations (5), we obtain the

five equations

5 :
Sl [hg(ci) - hd(e;) tan a(c,)]

=]

(10)...
= — tana(t;) - py(ti) + p,(t;) tan 8(ty) ,




_ P

(10} i=1, 2, ..., 5.

N
(W)

. 1
for the five unknowns ¢, ¢,

g

The suvlution of (10) irmediately gives us our now set

of orbital parameters and the mass of the unknown perturbing

body P,
gy Lol
ik+l(0) = o2 ,
(10 S0y = 3
RO IR
JHLgy o (S

k+1 .

Since we need xk+1(t), y (t), and ak+1(t),

for stage

k+2, we use relations (5) for the evaluation of these func—

tiens at t =0, A, 23, 30, ..., T. The cycle is ready to

begin once more, and it is repeated until a solution of the

nonlinear problem is found, or for a fixed <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>